Advanced Gold Oscillator Indicator
Built by Grok
Working!
//@version=6
// Gold Sell Oscillator - Advanced ML Edition (v6)
indicator("Gold Sell Oscillator Advanced ML", overlay=false)
// Input Parameters
rsiPeriod = input.int(14, "RSI Period", minval=1)
rsiOverbought = input.int(70, "RSI Overbought Level", minval=50, maxval=100)
macdFast = input.int(12, "MACD Fast", minval=1)
macdSlow = input.int(26, "MACD Slow", minval=1)
macdSignal = input.int(9, "MACD Signal", minval=1)
bbPeriod = input.int(20, "Bollinger Period", minval=1)
bbDev = input.float(2.5, "Bollinger Deviation", minval=0.1, step=0.1)
volPeriod = input.int(20, "Volume MA Period", minval=1)
adxPeriod = input.int(14, "ADX Period", minval=1)
lookback = input.int(100, "ML Lookback Period", minval=10)
neighbors = input.int(7, "Number of Neighbors", minval=1, maxval=15)
smoothingPeriod = input.int(5, "Smoothing Period", minval=1)
// Technical Indicators
rsi = ta.rsi(close, rsiPeriod)
[macdLine, signalLine, _] = ta.macd(close, macdFast, macdSlow, macdSignal)
[bbUpper, bbMiddle, bbLower] = ta.bb(close, bbPeriod, bbDev)
volMA = ta.sma(volume, volPeriod)
// Manual ADX Calculation
plusDM = math.max(high - high[1], 0)
minusDM = math.max(low[1] - low, 0)
tr = ta.tr(true)
plusDI = 100 * ta.rma(plusDM, adxPeriod) / ta.rma(tr, adxPeriod)
minusDI = 100 * ta.rma(minusDM, adxPeriod) / ta.rma(tr, adxPeriod)
dx = 100 * math.abs(plusDI - minusDI) / math.max(plusDI + minusDI, 0.0001)
adxValue = ta.rma(dx, adxPeriod)
// Current Feature Set (Normalized)
currentRsi = (rsi - 50) / 50
currentPricePos = (close - bbMiddle) / (bbUpper - bbLower)
currentMacdDiff = (macdLine - signalLine) / math.abs(close * 0.01)
currentVolRatio = volume / volMA
currentAdx = (adxValue - 25) / 25
// Historical Data Arrays
var float[] pastReturns = array.new_float(lookback)
var float[] pastRsi = array.new_float(lookback)
var float[] pastPricePos = array.new_float(lookback)
var float[] pastMacdDiff = array.new_float(lookback)
var float[] pastVolRatio = array.new_float(lookback)
var float[] pastAdx = array.new_float(lookback)
// Update Historical Data
for i = 0 to lookback - 2
if i == 0
prevClose = close[2]
returnValue = prevClose != 0 ? (close[1] - prevClose) / prevClose : 0.0
array.set(pastReturns, i, returnValue)
array.set(pastRsi, i, (rsi[1] - 50) / 50)
bbRange = bbUpper[1] - bbLower[1]
array.set(pastPricePos, i, bbRange != 0 ? (close[1] - bbMiddle[1]) / bbRange : 0.0)
array.set(pastMacdDiff, i, (macdLine[1] - signalLine[1]) / math.abs(close[1] * 0.01))
array.set(pastVolRatio, i, volMA[1] != 0 ? volume[1] / volMA[1] : 1.0)
array.set(pastAdx, i, (adxValue[1] - 25) / 25)
else
array.set(pastReturns, i, array.get(pastReturns, i-1))
array.set(pastRsi, i, array.get(pastRsi, i-1))
array.set(pastPricePos, i, array.get(pastPricePos, i-1))
array.set(pastMacdDiff, i, array.get(pastMacdDiff, i-1))
array.set(pastVolRatio, i, array.get(pastVolRatio, i-1))
array.set(pastAdx, i, array.get(pastAdx, i-1))
// Weighted Distance Calculation
var float[] distances = array.new_float(lookback)
for i = 0 to lookback - 1
rsiW = 0.3
priceW = 0.25
macdW = 0.2
volW = 0.15
adxW = 0.1
rsiDiff = math.pow(currentRsi - array.get(pastRsi, i), 2) * rsiW
priceDiff = math.pow(currentPricePos - array.get(pastPricePos, i), 2) * priceW
macdDiff = math.pow(currentMacdDiff - array.get(pastMacdDiff, i), 2) * macdW
volDiff = math.pow(currentVolRatio - array.get(pastVolRatio, i), 2) * volW
adxDiff = math.pow(currentAdx - array.get(pastAdx, i), 2) * adxW
totalDistance = math.sqrt(rsiDiff + priceDiff + macdDiff + volDiff + adxDiff)
array.set(distances, i, totalDistance)
// k-Nearest Neighbors
sortedDistances = array.copy(distances)
array.sort(sortedDistances)
kNearestReturns = array.new_float(neighbors)
kNearestOutcomes = array.new_float(neighbors)
for i = 0 to neighbors - 1
idx = array.indexof(distances, array.get(sortedDistances, i))
array.set(kNearestReturns, i, array.get(pastReturns, idx))
array.set(kNearestOutcomes, i, array.get(pastReturns, idx) < 0 ? 1 : 0)
// ML Sell Probability (0 to 1)
mlSellProb = array.sum(kNearestOutcomes) / neighbors
// Base Technical Conditions (Normalized to 0-1)
rsiScore = rsi >= rsiOverbought ? 1.0 : (rsi - 30) / (rsiOverbought - 30)
bbScore = close >= bbUpper ? 1.0 : math.max(0, (close - bbMiddle) / (bbUpper - bbMiddle))
volScore = volume > volMA * 2 ? 1.0 : math.max(0, (volume - volMA) / (volMA * 2))
macdScore = macdLine < signalLine ? 1.0 : math.max(0, (signalLine - macdLine) / math.abs(close * 0.01))
// Oscillator Calculation (Weighted Sum, 0-100)
oscRaw = (rsiScore * 25) + (bbScore * 25) + (volScore * 20) + (macdScore * 20) + (mlSellProb * 10)
oscillator = ta.sma(oscRaw, smoothingPeriod) // Smooth the output
// Plotting
plot(oscillator, title="Gold Sell Oscillator", color=color.red, linewidth=2)
hline(70, "Overbought", color=color.gray, linestyle=hline.style_dashed)
hline(30, "Oversold", color=color.gray, linestyle=hline.style_dashed)
// Alerts
alertcondition(oscillator > 70, title="Gold Sell Oscillator Overbought", message="Gold Sell Oscillator indicates potential selling opportunity!")
No comments: